آیا امواج موبایل می تواند مضر باشد؟

 

با سلام

بعد از مدتها که بخاطر مسایل کاری و مسافرت نتونستم مقاله جدیدی بزارم، برخورد به یه مقاله در مورد صدمه هایی که امواج موبایل میتونه به بدن ما بزنه انگیزه ای شد تا دوباره شروع کنم. امیدوارم که اینبار بتونم بدون وقفه به کارم ادامه بدم.

حتما تو روزنامه ها و رسانه ها چیزهای زیادی در زمینه خطرات امواج موبایل خوندید، شنیدید یا دیدید. اما این بار یه تجربه کاملا متفاوت رو از دو روزنامه نگار روسی که تو مسکو زندگی می کنند براتون میزارم.

آقایانی که تو عکس بالا مشاهده میکنید به نامهای ولادیمیر لاگوفسکی Vladimir Lagovski و آندره موی سینکو Andrei Moiseynko ازروزنامه Komsomolskaya Pravda (خداییش تلفظ این اسامی خیلی مشکل بود.) تصمیم میگیرند تا اثر امواج رادیویی گوشیهای تلفن همراه را بطور تجربی طی آزمایشی که خیلی هم شاید علمی نباشد، ببینند.

با توجه به اینکه گوشیهای تلفن همراه هنگام کار و برقراری ارتباط امواج رادیویی مایکرو ویو ارسال می کنند، آنها یک دستگاه بر اساس ساختار مایکروفرهای خانگی مطابق شکل زیر ساختند. بدین صورت که دو گوشی همراه را در فاصله کم بطوریکه به اندازه یک تخم مرغ بین آنها فاصله باشد قرار دادند، از یکی با دیگری تماس گرفتند و برای اینکه تماس بین گوشیها برقرار بماند یک ضبط صوت کنار آنها گذاشتند. (میدانید که در صورتیکه طی زمان مشخصی صدا بین دو گوشی رد و بدل نشود ارتباط قطع می گردد.) تخم مرغ مورد آزمایش نیز بین این دو گوشی قرار گرفت.

مراحل آزمایش بترتیب زیر بود :

 پس از ۱۵ دقیقه : تخم مرغ کمی گرم شد.

 پس از ۲۵ دقیقه : تخم مرغ خیلی گرم شد.

 پس از ۴۰ دقیقه : تخم مرغ خیلی داغ شد.

 پس از ۶۵ دقیقه : تخم مرغ پخته شد.

 

 در پایان نتایج زیر را بدست آوردند :

۱- پخت تخم مرغ با گوشی تلفن همراه امکانپذیر است، اما هزینه آن بسیار بالاست!

۲- حرفهایی که درباره خطرات گوشیها گفته می شود میتواند اغراق آمیز باشد، چرا که برای پخته شدن مغز شما حداقل به دو ساعت تماس تلفنی مداوم با دو گوشی تلفن همراه نیاز است! (قابل توجه اونایی که از ۲۴ ساعت ۳۶ ساعت گوشی دم گوششونه و معلوم هم نیست با کی حرف میزنن!)

 ۳- ما پیشنهاد نمی کنیم که شما گوشی تلفن همراهتون رو نزدیکی کمر حمل کنید!

از شوخی گذشته من به شخصه هیچ نتیجه گیری از این جریان نمی کنم. شما میتونید این آزمایش رو با صرف هزینه در منزل انجام بدید، یا در مورد اون با اهل فن و پزشک مشورت کنید، ولی من میگم احتیاط شرط عقله.

 

انرژی هسته ای

با توجه به بحث داغ انرژی هسته ای و پیامدهای دستیابی به این فناوری و مطالعه مقاله ای در سایت BBC  بد ندیدم که همان مقاله را در این بلاگ ذکر کنم چرا که هم ساده و هم مختصر اطلاعات جالبی در مورد انرژی هسته ای ارائه نموده است.

 

Peaceful Nuclear

چرخه سوخت هسته ای: از استخراج اورانیوم تا تولید انرژی

مقدمه: استخراج اورانیوم از معدن

اورانیوم که ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت میشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.

هنگامی که هسته اتم اورانیوم در یک واکنش زنجیره ای شکافته شود مقداری انرژی آزاد خواهد شد.

برای شکافت هسته اتم اورانیوم، یک نوترون به هسته آن شلیک میشود و در نتیجه این فرایند، اتم مذکور به دو اتم کوچکتر تجزیه شده و تعدادی نوترون جدید نیز آزاد میشود که هرکدام به نوبه خود میتوانند هسته های جدیدی را در یک فرایند زنجیره ای تجزیه کنند.

 مجموع جرم اتمهای کوچکتری که از تجزیه اتم اورانیوم بدست می آید از کل جرم اولیه این اتم کمتر است و این بدان معناست که مقداری از جرم اولیه که ظاهرا ناپدید شده در واقع به انرژی تبدیل شده است، و این انرژی با استفاده از رابطه E=MC۲ یعنی رابطه جرم و انرژی که آلبرت اینشتین نخستین بار آنرا کشف کرد قابل محاسبه است.

اورانیوم به صورت سه ایزوتوپ مختلف در طبیعت یافت میشود. دو گونه اصلی آن اورانیوم U۲۳۵ و U۲۳۸ است که هر دو دارای تعداد پروتون یکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بیانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از این دو ایزوتوپ است.

برای بدست آوردن بالاترین بازدهی در فرایند زنجیره ای شکافت هسته باید از اورانیوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته میشود. هنگامی که این نوع اورانیوم به اتمهای کوچکتر تجزیه میشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو یا سه نوترون جدید نیز رها میشود که در صورت برخورد با اتمهای جدید اورانیوم بازهم انرژی حرارتی بیشتر و نوترونهای جدید آزاد میشود.

اما بدلیل "نیمه عمر" کوتاه اورانیوم ۲۳۵ و فروپاشی سریع آن، این ایزوتوپ در طبیعت بسیار نادر است بطوری که از هر ۱۰۰۰ اتم اورانیوم موجود در طبیعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگینتر U۲۳۸ است.

کشورهای اصلی تولید کننده اورانیوم
استرالیا
چین
کانادا
قزاقستان
نامیبیا
نیجر
روسیه
ازبکستان

 

فراوری:

سنگ معدن اورانیوم بعد از استخراج، در آسیابهائی خرد و به گردی نرم تبدیل میشود. گرد بدست آمده سپس در یک فرایند شیمیائی به ماده جامد زرد رنگی تبدیل میشود که به کیک زرد موسوم است. کیک زرد دارای خاصیت رادیو اکتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشکیل میدهد.

دانشمندان هسته ای برای دست یابی هرچه بیشتر به ایزوتوپ نادر U۲۳۵ که در تولید انرژی هسته ای نقشی کلیدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای این کار، دانشمندان ابتدا کیک زرد را طی فرایندی شیمیائی به ماده جامدی به نام هگزافلوئورید اورانیوم تبدیل میکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتیگراد به گاز تبدیل میشود.

هگزافلوئورید اورانیوم که در صنعت با نام ساده هگز شناخته میشود ماده شیمیائی خورنده ایست که باید آنرا با احتیاط نگهداری و جابجا کرد. به همین دلیل پمپها و لوله هائی که برای انتقال این گاز در تاسیسات فراوری اورانیوم بکار میروند باید از آلومینیوم و آلیاژهای نیکل ساخته شوند. همچنین به منظور پیشگیری از هرگونه واکنش شیمیایی برگشت ناپذیر باید این گاز را دور از معرض روغن و مواد چرب کننده دیگر نگهداری کرد.

غنی سازی:

هدف از غنی سازی تولید اورانیومی است که دارای درصد بالایی از ایزوتوپ U۲۳۵ باشد.

اورانیوم مورد استفاده در راکتورهای اتمی باید به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانیوم ۲۳۵ باشد، در حالی که اورانیومی که در ساخت بمب اتمی بکار میرود حداقل باید حاوی ۹۰ درصد اورانیوم ۲۳۵ باشد.

یکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتریفوژ گاز است.سانتریفوژ از اتاقکی سیلندری شکل تشکیل شده که با سرعت بسیار زیاد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئورید اورانیوم به داخل این سیلندر دمیده شود نیروی گریز از مرکز ناشی از چرخش آن باعث میشود که مولکولهای سبکتری که حاوی اورانیوم ۲۳۵ است در مرکز سیلندر متمرکز شوند و مولکولهای سنگینتری که حاوی اورانیوم ۲۳۸ هستند در پایین سیلندر انباشته شوند. 

اورانیوم ۲۳۵ غنی شده ای که از این طریق بدست می آید سپس به داخل سانتریفوژ دیگری دمیده میشود تا درجه خلوص آن باز هم بالاتر رود. این عمل بارها و بارها توسط سانتریفوژهای متعددی که بطور سری به یکدیگر متصل میشوند تکرار میشود تا جایی که اورانیوم ۲۳۵ با درصد خلوص مورد نیاز بدست آید.

آنچه که پس از جدا سازی اورانیوم ۲۳۵ باقی میماند به نام اورانیوم خالی یا فقیر شده شناخته میشود که اساسا از اورانیوم ۲۳۸ تشکیل یافته است. اورانیوم خالی فلز بسیار سنگینی است که اندکی خاصیت رادیو اکتیویته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های دیگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده میشود.

یک شیوه دیگر غنی سازی روشی موسوم به دیفیوژن یا روش انتشاری است. دراین روش گاز هگزا فلوئورید اورانیوم به داخل ستونهایی که جدار آنها از اجسام متخلخل تشکیل شده دمیده میشود. سوراخهای موجود در جسم متخلخل باید قدری از قطر مولکول هگزافلوئورید اورانیوم بزرگتر باشد.

در نتیجه این کار مولکولهای سبکتر حاوی اورانیوم ۲۳۵ با سرعت بیشتری در این ستونها منتشر شده و تفکیک میشوند. این روش غنی سازی نیز باید مانند روش سانتریفوژ بارها و باره تکرار شود.

 

راکتور هسته ای:

راکتور هسته ای وسیله ایست که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام میگیرد. انرژی حرارتی بدست آمده از این طریق را می توان برای بخار کردن آب و به گردش درآوردن توربین های بخار ژنراتورهای الکتریکی مورد استفاده قرار داد.

اورانیوم غنی شده ، معمولا به صورت قرصهائی که سطح مقطعشان به اندازه یک سکه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راکتورها به مصرف میرسند. این قرصها روی هم قرار داده شده و میله هایی را تشکیل میدهند که به میله سوخت موسوم است. میله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری میشوند.

در بسیاری از نیروگاهها برای جلوگیری از گرم شدن بسته های سوخت در داخل راکتور، این بسته ها را داخل آب سرد فرو می برند. در نیروگاههای دیگر برای خنک نگه داشتن هسته راکتور ، یعنی جائی که فرایند شکافت هسته ای در آن رخ میدهد ، از فلز مایع (سدیم) یا گاز دی اکسید کربن استفاده می شود.

 

1- هسته راکتور
2-پمپ خنک کننده
3- میله های سوخت
4- مولد بخار
5- هدایت بخار به داخل توربین مولد برق

برای تولید انرژی گرمائی از طریق فرایند شکافت هسته ای ، اورانیومی که در هسته راکتور قرار داده میشود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد. یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد که امکان آغاز یک واکنش زنجیره ای مداوم وجود داشته باشد.

برای تنظیم و کنترل فرایند شکافت هسته ای در یک راکتور از میله های کنترلی که معمولا از جنس کادمیوم است استفاده میشود. این میله ها با جذب نوترونهای آزاد در داخل راکتور از تسریع واکنشهای زنجیره ای جلوگیری میکند. زیرا با کاهش تعداد نوترونها ، تعداد واکنشهای زنجیره ای نیز کاهش میابد.

حدودا ۴۰۰ نیروگاه هسته ای در سرتاسر جهان فعال هستند که تقریبا ۱۷ درصد کل برق مصرفی در جهان را تامین میکنند. از جمله کاربردهای دیگر راکتورهای هسته ای، تولید نیروی محرکه لازم برای جابجایی ناوها و زیردریایی های اتمی است. 

بازفراوری:

برای بازیافت اورانیوم از سوخت هسته ای مصرف شده در راکتور از عملیات شیمیایی موسوم به بازفراوری استفاده میشود. در این عملیات، ابتدا پوسته فلزی میله های سوخت مصرف شده را جدا میسازند و سپس آنها را در داخل اسید نیتریک داغ حل میکنند. در نتیجه این عملیات، ۱% پلوتونیوم ، ۳% مواد زائد به شدت رادیو اکتیو و ۹۶% اورانیوم بدست می آید که دوباره میتوان آنرا در راکتور به مصرف رساند.

راکتورهای نظامی این کار را بطور بسیار موثرتری انجام میدهند. راکتور و تاسیسات باز فراوری مورد نیاز برای تولید پلوتونیوم را میتوان بطور پنهانی در داخل ساختمانهای معمولی جاسازی کرد. به همین دلیل، تولید پلوتونیوم به این طریق، برای هر کشوری که بخواهد بطور مخفیانه تسلیحات اتمی تولید کند گزینه جذابی خواهد بود.

بمب پلوتونیومی:

استفاده از پلوتونیوم به جای اورانیوم در ساخت بمب اتمی مزایای بسیاری دارد. تنها چهار کیلوگرم پلوتونیوم برای ساخت بمب اتمی با قدرت انفجار ۲۰ کیلو تن کافی است. در عین حال با تاسیسات بازفراوری نسبتا کوچکی میتوان چیزی حدود ۱۲ کیلوگرم پلوتونیوم در سال تولید کرد.

 

 

1- منبع یا مولد نوترونی
2- هسته پلوتونیومی
3- پوسته منعکس کننده (بریلیوم)
4- ماده منفجره پرقدرت
5- چاشنی انفجاری

کلاهک هسته ای شامل گوی پلوتونیومی است که اطراف آنرا پوسته ای موسوم به منعکس کننده نوترونی فرا گرفته است. این پوسته که معمولا از ترکیب بریلیوم و پلونیوم ساخته میشود، نوترونهای آزادی را که از فرایند شکافت هسته ای به بیرون میگریزند، به داخل این فرایند بازمی تاباند.

استفاده از منعکس کننده نوترونی عملا جرم بحرانی را کاهش میدهد و باعث میشود که برای ایجاد واکنش زنجیره ای مداوم به پلوتونیوم کمتری نیاز باشد.

برای کشور یا گروه تروریستی که بخواهد بمب اتمی بسازد، تولید پلوتونیوم با کمک راکتورهای هسته ای غیر نظامی از تهیه اورانیوم غنی شده آسانتر خواهد بود. کارشناسان معتقدند که دانش و فناوری لازم برای طراحی و ساخت یک بمب پلوتونیومی ابتدائی، از دانش و فنآوری که حمله کنندگان با گاز اعصاب به شبکه متروی توکیو در سال ۱۹۹۵ در اختیار داشتند پیشرفته تر نیست.

چنین بمب پلوتونیومی میتواند با قدرتی معادل ۱۰۰ تن تی ان تی منفجر شود، یعنی ۲۰ مرتبه قویتر از قدرتمندترین بمب گزاری تروریستی که تا کنون در جهان رخ داده است. 

بمب اورانیومی:

هدف طراحان بمبهای اتمی ایجاد یک جرم فوق بحرانی ( از اورانیوم یا پلوتونیوم) است که بتواند طی یک واکنش زنجیره ای مداوم و کنترل نشده، مقادیر متنابهی انرژی حرارتی آزاد کند.

یکی از ساده ترین شیوه های ساخت بمب اتمی استفاده از طرحی موسوم به "تفنگی" است که در آن گلوله کوچکی از اورانیوم که از جرم بحرانی کمتر بوده به سمت جرم بزرگتری از اورانیوم شلیک میشود بگونه ای که در اثر برخورد این دو قطعه، جرم کلی فوق بحرانی شده و باعث آغاز واکنش زنجیره ای و انفجار هسته ای میشود. کل این فرایند در کسر کوچکی از ثانیه رخ میدهد.

جهت تولید سوخت مورد نیاز بمب اتمی، هگزا فلوئورید اورانیوم غنی شده را ابتدا به اکسید اورانیوم و سپس به شمش فلزی اورانیوم تبدیل میکنند. انجام این کار از طریق فرایندهای شیمیائی و مهندسی نسبتا ساده ای امکان پذیر است.

قدرت انفجار یک بمب اتمی معمولی حداکثر ۵۰ کیلو تن است، اما با کمک روش خاصی که متکی بر مهار خصوصیات جوش یا گداز هسته ای است میتوان قدرت بمب را افزایش داد.

در فرایند گداز هسته ای ، هسته های ایزوتوپهای هیدروژن به یکدیگر جوش خورده و هسته اتم هلیوم را ایجاد میکنند. این فرایند هنگامی رخ میدهد که هسته های اتمهای هیدروژن در معرض گرما و فشار شدید قرار بگیرند. انفجار بمب اتمی گرما و فشار شدید مورد نیاز برای آغاز این فرایند را فراهم میکند.

طی فرایند گداز هسته ای نوترونهای بیشتری رها میشوند که با تغذیه واکنش زنجیره ای، انفجار شدیدتری را بدنبال می آورند. اینگونه بمبهای اتمی تقویت شده به بمبهای هیدروژنی یا بمبهای اتمی حرارتی موسومند.

تکنولوژی بکار رفته در cpu های دو هسته ای


در چندین ماه گذشته پیشرفت های جدیدی در طراحی پروسسورها، بویژه از طرف شرکت AMD حاصل شد. این شرکت علاوه بر اینکه یک cpu با طراحی کاملا ْ64 بیتی عرضه کرد که باعث برتری یافتن این شرکت در بازار کامپیوترهای رومیزی پیشرفته گردید، همچنین در حذف کنترل کننده‌های حافظه (MCH) پیشقدم شد که در عملکرد Athlon 64 و چیپهای optron یک پیشرفت قابل ملاحظه نسبت به پروسسورهای intel به حساب می‌آید. اینتل به طور متقابل پروسسور سازگار 64 بیتی را عرضه نمود. به تازگی نیز هر دو شرکت پردازشگرهای دوهسته ای را عرضه نموده‌اند، این پروسسورها بهتر از آن چیزی که شما انتظار دارید کار می‌کنند. پروسسورهای اینتل و AMD هر دو دارای دو هسته پروسسور، در حال کار در یک قالب می‌باشند که هر یک از هسته‌ها بصورت مستقل توابع و پردازشهای داده را انجام می‌دهند (در مورد اینتل این مورد کامل تر است) و هر دو این هسته‌ها توسط نرم افزار سیستم عامل هم آهنگ می گردند.
در این مقاله سعی شده تا تکنولوژی که در این دو محصول استفاده شده و مقدار افزایش کارایی که شما می توانید از آنها انتظار داشته باشید بررسی گردد. در حال حاضر AMD فقط پروسورهای کلاس سرور opteron با دو هسته را بطور کامل به بازار عرضه کرده و بزودی Athlon 64*2 برای کامپیوترهای رومیزی را نیز به بازار عرضه می‌کند. در طرف مقابل اینتل در حال حاضر پنتیوم Extreme Edition 840 رومیزی با دو هسته را به بازار عرضه نموده در حالی که خطهای تولید Pentium D و dual xeons هنوز متوقف نشده اند.
با توجه به اینکه پروسسورهای دو هسته‌ای در اصل یک سیستم چند پروسسوره که در یک قالب قرار گرفته اند، می باشد. اجازه بدهید اینک چندین تکنولوژی که در سیستم های چند پردازشگر استفاده می شود را مورد بررسی قرار دهیم.

چند پردازشگرهای متقارن ( SMP (symmetric Multi processing

SMP روش مشترکی می باشد که چندین پردازشگر بطور جداگانه با یکدیگر در یک مادربرد کار می‌کنند. سیستم عامل با هر دو cpu تقریباً بطور یکسان کار می‌کند و کارهای مورد نیاز را به آنها ارجاع می‌دهد. چیپ‌های دوهسته ای جدید intel و AMD توانایی SMP را بصورت داخلی مورد توجه قرار داده‌اند. پروسسورهای سرور opteron دوهسته ای می‌تواند همچنین بصورت خارجی با دیگر چیپ‌های دوهسته ای ارتباط برقرار کند. (بشرط آنکه چیپ متقابل نیز دارای این خاصیت باشد)
محدودیت اصلیSMP در پشتیبانی سیستم عاملها و نرم افزارها از این تکنولوژی می‌باشد. خیلی از سیستم عاملها (مانند ویندوز XP سری خانگی ) توانایی پشتیبانی از SMP را ندارند و از دومین پردازشگر استفاده نمی‌کنند. همچنین بیشتر برنامه‌های پیشرفته بصورت تک رشته ای کار می‌کنند، در اصل در هر زمان فقط یک پردازشگر در حالت فعال می باشد. برنامه های چند رشته‌ای از پتانسیل موجود در سیستم‌های دو یا چند پرازشگر، می‌توانند نتایج مفیدتری بگیرند، ولی به صورت کامل عمومیت ندارد.
در گذشته intel و AMD سعی داشته‌اند تا تکنولوژی جدیدی مثل SMD را بیشتر برای پردازشگرهای سرور پیشرفته مانند opteron و Xeon استفاده نمایند ( البته تا قبل از پنتیوم 3 )

Hyperthreading
این تکنولوژی بصورت اختصاصی توسط اینتل در پردازشگرهای چند هسته‌ای بکار گرفته شده است. این تکنولوژی قبلاً نیز توسط این شرکت بکار گرفته ‌شده‌ بود. اینتل برای آنکه از منابع CPUبنحو بهتری استفاده نماید فقط قسمتهایی که کار پردازش اطلاعات را انجام می دهد را تکثیر کرده است. یعنی آنکه منابع داده در داخل CPU بصورت مشترک استفاده می‌شد. ایده hyperthreading برای دو برابرکردن مقدار فعالیت چیپ می‌باشد تا آنکه کاهش عملکرد سیستم که در اثر فقدان حافظه Cash روی می‌دهد کمتر گردد همچنین بصورت تئوری نشان داده شده که منابع سیستم کمتر تلف می‌‌گردند.
در صورتی که CPU های hyperthreading مانند دو پروسسور حقیقی بنظر می رسد. ولی این CPU ها نمی‌توانند عملکردی مشابه دو CPU مجزا مانند CPU های دوهسته ای داشته باشند. زیرا در CPU های دو هسته ای دو "Threads"مشابه بطور همزمان و با Cash ‌های جداگانه L1 و L2 می‌توانند اجرا گردند که این عمل در پردازشگرهای hyperthreading قابل انجام نمی‌باشد.
یکی از چیپهای جدید اینتل بنام ، پردازشگر پنتیوم Extreme Edition 840 ، در داخل هر هسته خود از تکنولوژی hyperthreading نیز پشتیبانی می‌کند، یعنی آنکه در یک سیستم عامل آن بصورت چهار پردازشگر حقیقی دیده می‌شود.

دو چیپ در یک قالب ... چرا؟

چرا دو شرکت اینتل و AMD بطور ناگهانی شروع به توزیع پردازشگرهای دو هسته‌ای کردند؟ 
اول از همه رقابت چنانچه بعداً بیان خواهیم کرد AMD از ابتدا توانائی بالقوه دوهسته‌ای را در پردازشگرهای 64 بیتی خود داشت. ساختمان ورودی و خروجی برای دومین هسته در CPU های فعلی 64 بیتی AMD موجود می‌باشد.
هیچ شرکتی نمی تواند دیگران را از بدست آوردن تکنولوژی‌های جدید منع نماید و AMD در حال حاضر با موفقیت چشمگیر خط تولید پرداشگرهای 64 بیتی آسودگی را از intel سلب نموده ‌است.
برای اینتل ضروری می‌باشد که دارای یک تولید تخصصی در تکنولوژی دوهسته ای ‌باشد تا رقابت با شرکاء تجاری خود را حفظ نماید.
دوم، کارایی می‌باشد. مطمئناً برنامه‌های کاربردی چند رشته‌ای در پردازشگرهایی که توانایی انجام چند پردازش را دارند در پردازشگرهایی که یک پردازش را در هر زمان انجام می‌دهند، بهتر عمل خواهند نمود.
البته برای سیستم های چند پردازشگره یک ایراد عمومی وجود دارد و آن تاْخیری می‌باشد که این CPU ها در اجرای کار سیستم بوجود می آورند. به بیان ساده در حال حاضر روشی برای سیستم عامل‌های موجود وجود ندارند تا پردازشها را بطور کاملاً مساوی در بین پردازشگرها تقسیم نماید، پردازشگر دوم عموماً بایک مداخله کمتر و کارایی پایین‌تر کارمی‌کند، در صورتی که ممکن است پردازشگر اول بصورت 100% در حال پردازش ‌باشد.
سومین دلیل کمتر نمایان است، ناامیدی AMD و اینتل می‌باشد، هر دو شرکت با یک مانع جدی برای افزایش سرعت پردازشگرها و کوچکتر کردن اندازه قالب آنها روبرو شده اند تا این مانع حذف نشود و یا اینکه تا کاربران عمومی متوجه نشوند که GHZ به تنهایی کارایی را بیان نمی‌کند. هر دو شرکت برای دست یافتن به هر پیشرفت که کارایی پردازشگرها را بهبود بخشید تلاش خواهند نمود و تقریباً دلیل اصلی بوجود آمدن پردازشگرهای دو هسته ای را می‌توان همین دلیل سوم بیان نمود.

دسترسی AMD به تکنولوژی دو هسته ای
فرم فاکتور فعلی پردازشگر 64 اتلن به طراحی دو هسته ای خیلی نزدیک می‌باشد. وجود کنترل کننده‌های Hypertransport و کنترل کننده حافظه درقالب چیپهای فعلی 64 اتلن به معنی آنست که اضافه نمودن دومین هسته در داخل چیپ چندان مشکل نمی‌باشد.
بدلیل رابط NorthBridge که AMD برای اتلن 64 تهیه کرده‌ است کنترل کننده حافظه و رابط Hypertransport در داخل چیپ پشتیبانی می گردد. این به چیپ‌های دوهسته‌ای امکان می دهد که از داخل خود پردازشگر با یکدیگر ارتباط برقرار کنند.



تعداد ترانزیستورهای پردازشگرهای اتلن 64*2 بیش از دو برابر پردازشگرهای اتلن 64 می‌باشد. با توجه به اینکه در ساختن CPU های جدید از روش 90nm استفاده می شود سایز کل چیپ کمی افزایش پیدا کرده و ولتاژ عملکرد 1.35 تا 1.4 می‌باشد و گرمای خروجی به بیش از 110w کمی افزایش می‌یابد.
هر هسته پردازشگر حافظه Cash L1 و L2 مخصوص به خود را دارد، 128 KB برای L1 و بسته به مدل 512 KB تا 1 MB برای L2.
دو برتری مهمی که AMD در CPU های دو هسته‌ای دارد عبارتند از اینکه :
"Crossbar Switch" که آدرسها را جمع‌آوری کرده و توزیع می کند و داده را از هر هسته به هسته دیگر یا باقی سیستم توزیع می کند در حال حاضر امکان اضافه شدن دومین هسته را دارد.
موفقیت دیگر AMD که از نظر مصرف کننده خیلی مهم می‌باشد امکان استفاده اتلن 64*2 از مادربردهای سوکت 939/940 می باشد و فقط لازم است که شرکت تولید کننده مادربرد BIOS را برای پشتیبانی از خصوصیات جدید به روز رسانی نماید.

دسترسی اینتل به پردازشگر دو هسته ای

با توجه به اینکه اینتل مانند AMD دارای مدل قبلی برای اضافه کردن هسته جدید در داخل یک قالب CPU نبود، برای ساخت آن مدل جدیدی را طراحی نمود که البته دارای نواقصی نسبت به مدل AMD می‌باشد.
پنتیوم D در اصل از دو پردازشگر "پرسکات" پنتیوم D در یک قالب تشکیل شده است ، این پردازنده دارای مزیت داشتن دو حافظه کش L1 و L2 برای هر هسته بطور مجزا می‌باشد، ولی دارای نواقصی نیز می باشند از جمله اینکه این دو پرداشگر برای ارتباط برقرار کردن با یکدیگر باید، از NorthBridge و FSB خارج پردازشگر استفاده نمایند. تعداد ترانزستورها برای چیپ های جدید بیش از 230 میلیون و گرمای تولید شده به مقدار فوق‌العاده 130W برای پنتیوم Extereme Edition می‌رسد.

یکی از بزرگترین معایب طراحی اینتل نسبت به AMD که سوکت‌های 939 را برای طراحی پردازشگرهای دو هسته‌ای خود حفظ نمود آن است که راه حل دو هسته‌ای اینتل نیاز به یک جفت چیپ ست جدید بنامهای 955X و 945P دارد. شرکت nvidia اخیراً ویرایش اینتل SLI که پروسسورهای دو هسته‌ای را پشتیبانی می‌کند را به بازار عرضه کرده ‌است که این مورد هم زمان بیشتری را مصرف و هم هزینه‌ای اضافی برای مصرف کننده در پی دارد.

گرما و پهنای باند :
هر دو پردازشگرهای تک هسته‌ای AMD و Intel گرمای فوق‌العاده زیادی تولید می‌کردند، که هیت سینک‌های فوق‌العاده بزرگی که برای آنها استفاده می ‌شود گویای این مطلب می‌باشد. حال با اضافه کردن یک هسته اضافی چگونه می‌توان این پردازشگرها را خنک نمود.
ولی AMD و Intel از چندین روش برای خنثی کردن این موضوع استفاده کرده‌اند، ابتدا آنکه در ساخت این پردازشگرها از تکنولوژی 90nm استفاده شده که باعث کوچکتر شدن CPU ونزدیکتر شدن قسمتهای مختلف بر روی CPU شده و در نتیجه گرمای تولید شده را به مقدار زیادی کاهش می‌دهد و دوم آنکه فرکانس کاری این CPU ها بمقدار حدود 400MHz نسبت به آخرین CPU های تک هسته ای کاهش پیداکرده و همچنین هسته دوم همیشه بصورت کامل کار نمی‌کند این سه مطلب باعث می‌گردد که گرمای تولید شده بمقدار خیلی زیادی نسبت به CPU های تک هسته‌ای افزایش نیابد.
پهنای باند بکار رفته محدودیت بزرگتری برای CPU های دو هسته‌ای می‌باشد، زیرا هر دو AMD و Intel پهنای باند برای CPU های تک هسته‌ای را برای این نوع CPU ها نیز حفظ کرده‌اند و طرحی برای افزایش آن ندارد.

دو پردازشگر تک هسته ای در مقابل یک پردازشگر دو هسته‌ای
محاسبات و بررسی طرحهای موجود نشان می‌دهد که دو چیپ اپترن AMD باید دارای سرعت بالاتری نسبت به یک چیپ دو هسته‌ای باشد، زیرا هر یک از این OPTERON ها دارای یک کنترل کننده حافظه مجزا می‌باشد ولی در چیپ‌های دو هسته‌ای هر دو هسته باید یک کنترل کننده حافظه را بصورت مشترک استفاده کنند.
در مورد اینتل این موضوع مطرح نمی‌باشد زیرا در هر دو طرح یک کنترل کننده حافظه در خارج از CPU استفاده می شود و فقط در طراحی دوهسته ای این مسیرها کوتاه‌تر می‌باشند که چندان پارامتر مطرحی در افزایش سرعت نمی‌باشد.
یکی از بزرگترین مزایای پردازشگرهای دو هسته‌ای نسبت به دو پردازشگر تک هسته‌ای بحث اقتصادی آن می‌باشد، زیرا اولاً خرید یک CPU دو هسته‌ای از دو CPU تک هسته‌ای ارزانتر می‌باشد و از طرف دیگر باید قیمت مادربرد را نیز لحاظ کرد که در این صورت این موضوع بیشتر جلب توجه می‌نماید.



با تشکر از دوست و همکار عزیزم : مهندس حجت وفا